Numerical investigations on self-similar solutions of the nonlinear diffusion equation

نویسندگان

  • Yibao Li
  • Junseok Kim
چکیده

In this paper, we present the numerical investigations of self-similar solutions for the nonlinear diffusion equation ht = −(hhxxx)x, which arises in the context of surface-tension-driven flow of a thin viscous liquid film. Here, h = h(x, t) is the liquid film height. A self-similar solution is h(x, t) = h(α(t)(x − x0) + x0, t0) = f (α(t)(x − x0)) and α(t) = [1 − 4A(t − t0)], where A and x0 are constants and t0 is a reference time. To discretize the governing equation, we use the Crank–Nicolson finite difference method, which is second-order accurate in time and space. The resulting discrete system of equations is solved by a nonlinear multigrid method. We also present efficient and accurate numerical algorithms for calculating the constants, A, x0, and t0. To find a self-similar solution for the equation, we numerically solve the partial differential equation with a simple step-function-like initial condition until the solution reaches the reference time t0. Then, we take h(x, t0) as the self-similar solution f (x). Various numerical experiments are performed to show that f (x) is indeed a self-similar solution. © 2013 Elsevier Masson SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of diffusion equation for point defects

An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...

متن کامل

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

متن کامل

Self-Similar Solutions for Reversing Interfaces in the Slow Diffusion Equation with Strong Absorption

We consider the slow nonlinear diffusion equation subject to a strong absorption rate and construct local self-similar solutions for reversing (and anti-reversing) interfaces, where an initially advancing (receding) interface gives way to a receding (advancing) one. We use an approach based on invariant manifolds, which allows us to determine the required asymptotic behaviour for small and larg...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

The tanh method for solutions of the nonlinear modied Korteweg de Vries equation

In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013